Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 67
Filter
1.
Chinese Journal of Biotechnology ; (12): 2695-2705, 2023.
Article in Chinese | WPRIM | ID: wpr-981226

ABSTRACT

The aim of this study was to clone the goat RPL29 gene and analyze its effect on lipogenesis in intramuscular adipocytes. Using Jianzhou big-eared goats as the object, the goat RPL29 gene was cloned by reverse transcription-polymerase chain reaction (RT-PCR), the gene structure and expressed protein sequence were analyzed by bioinformatics, and the mRNA expression levels of RPL29 in various tissues and different differentiation stages of intramuscular adipocytes of goats were detected by quantitative real-time PCR (qRT-PCR). The RPL29 overexpression vector pEGFP-N1-RPL29 constructed by gene recombination was used to transfect into goat intramuscular preadipocytes and induce differentiation. Subsequently, the effect of overexpression of RPL29 on fat droplet accumulation was revealed morphologically by oil red O and Bodipy staining, and changes in the expression levels of genes related to lipid metabolism were detected by qRT-PCR. The results showed that the length of the goat RPL29 was 507 bp, including a coding sequence (CDS) region of 471 bp which encodes 156 amino acid residues. It is a positively charged and stable hydrophilic protein mainly distributed in the nucleus of cells. Tissue expression profiling showed that the expression level of this gene was much higher in subcutaneous adipose tissue and inter-abdominal adipose tissue of goats than in other tissues (P < 0.05). The temporal expression profile showed that the gene was expressed at the highest level at 84 h of differentiation in goat intramuscular adipocytes, which was highly significantly higher than that in the undifferentiated period (P < 0.01). Overexpression of RPL29 promoted lipid accumulation in intramuscular adipocytes, and the optical density values of oil red O staining were significantly increased (P < 0.05). In addition, overexpression of RPL29 was followed by a highly significant increase in ATGL and ACC gene expression (P < 0.01) and a significant increase in FASN gene expression (P < 0.05). In conclusion, the goat RPL29 may promote intra-muscular adipocyte deposition in goats by up-regulating FASN, ACC and ATGL.


Subject(s)
Animals , Lipogenesis/genetics , Adipogenesis/genetics , Goats/genetics , Adipocytes , Cell Differentiation/genetics , Sequence Analysis , Cloning, Molecular
2.
Rev. Univ. Ind. Santander, Salud ; 54(1): e335, Enero 2, 2022. graf
Article in Spanish | LILACS | ID: biblio-1407034

ABSTRACT

Resumen Introducción: La obesidad es considerada un factor de riesgo para desarrollar resistencia a la insulina. La expansión del tejido adiposo se ha relacionado con el aumento de la producción de citoquinas proinflamatorias que, junto a los ácidos grasos son responsables, al menos en parte, del desarrollo de la resistencia a la insulina y esta a su vez, facilita el desarrollo de diabetes mellitus tipo 2 (DMT2). Objetivo: El propósito de este estudio fue realizar y caracterizar un modelo in vitro de obesidad empleando concentraciones altas de glucosa e insulina en una línea de células adipocitarias. Métodos: Se indujo modelo de hipertrofia celular realizando un estímulo en adipocitos maduros con una concentración de glucosa (450 mg/dL) e insulina (106 pmol/L) (modelo HGHI). Tras estímulo se realizaron ensayos de viabilidad celular, diámetro celular, movilización de lípidos y marcadores de señalización de insulina. Resultados: Tras el tratamiento con HGHI, se evidencia hipertrofia adipocitaria, incremento en la acumulación de lípidos, reducción de la ruptura de éstos, alteración de la señalización de insulina y tendencia a modificación de proteínas de marcadores de estrés de retículo y estrés oxidativo. Conclusión: Estos resultados demuestran la validez del modelo in vitro que simula al menos en parte la obesidad asociada a insulino resistencia, siendo una herramienta útil para estudiar los mecanismos de susceptibilidad a obesidad y resistencia a la insulina inducida in vitro con diferentes moléculas.


Abstract Introduction: Obesity is considered a risk factor for developing insulin resistance. The increase in adipose tissue has been related to the increase in the production of pro-inflammatory cytokines, which together with fatty acids are responsible, at least in part, for the development of insulin resistance, and this in turn facilitates the development of T2 diabetes mellitus type 2 (DMT2). Objective: The purpose of this study was to perform and characterize an in vitro model of obesity using high concentrations of glucose and insulin on an adipocyte cell line. Methods: A cell hypertrophy model was induced by stimulating mature adipocytes with a concentration of glucose (450 mg/dL) and insulin (106 pmol/L) (HGHI model). The cell viability, cell diameter, lipid mobilization and insulin signalling markers were evaluated. Results: After HGHI treatment, adipocytes show hypertrophy, increase in lipid accumulation, reduction of lipid breakdown, alteration of insulin signalling, a tendency to modify proteins of reticulum stress markers and, oxidative stress. Conclusion: These results demonstrate a new in vitro model that simulates, at least in part, obesity associated with insulin resistance being a useful tool to study the mechanisms of susceptibility to obesity and insulin resistance induced in vitro by different molecules.


Subject(s)
Humans , Adipocytes , Lipogenesis , Glucose , Insulin , Lipolysis
3.
Int. j. morphol ; 39(3): 732-738, jun. 2021. ilus, tab
Article in English | LILACS | ID: biblio-1385401

ABSTRACT

SUMMARY: Nonalcoholic fatty liver disease (NAFLD) might progress the steatosis to nonalcoholic steatohepatitis (NASH), reaching a cirrhosis state and possibly hepatocellular carcinoma. The liver of three-month-old C57BL/6J mice (wild-type, WT group, n=10) and leptin- deficient obese mice (ob/ob group, n=10) were studied, focusing on the mechanisms associated with the activation of the hepatic stellate cells (HSCs) and pro-fibrogenesis. The obese ob/ob animals' liver showed steatosis, increased lipogenesis gene expressions, inflammation, increased pro-inflammatory gene expressions, inflammatory infiltrate, and potential apoptosis linked to a high Caspase 3 expression. In ob/ob mice, liver sections were labeled in the fibrotic zones by anti-alpha-smooth muscle actin (alpha-SMA) and anti-Reelin, but not in the WT mice. Moreover, the alpha-SMA gene expression was higher in the ob/ob group's liver than the WT group. The pro-fibrogenic gene expressions were parallel to anti- alpha-SMA and anti-Reelin immunofluorescence, suggesting HSCs activation. In the ob/ob animals, there were increased gene expressions involved with lipogenesis (Peroxisome proliferator-activated receptor-gamma, Cell death-inducing DFFA-like effector-c, Sterol regulatory element-binding protein-1c, and Fatty acid synthase), pro-fibrogenesis (Transforming growth factor beta1, Smad proteins- 3, Yes-associated protein-1, Protein platelet-derived growth factor receptor beta), pro-inflammation (Tumor necrosis factor-alpha, and Interleukin-6), and apoptosis (Caspase 3). In conclusion, the results in obese ob/ob animals provide a clue to the events in humans. In a translational view, controlling these targets can help mitigate the hepatic effects of human obesity and NAFLD progression to NASH.


RESUMEN: La enfermedad del hígado graso no alcohólico (HGNA) puede progresar de la esteatosis a esteatohepatitis no alcohólica (ENA), alcanzando un estado de cirrosis y posiblemente carcinoma hepatocelular. Se estudió el hígado de ratones C57BL / 6J de tres meses de edad (tipo salvaje, grupo WT, n = 10) y ratones obesos con deficiencia de leptina (grupo ob/ob, n = 10), centrándose en los mecanismos asociados con la activación de las células estrelladas hepáticas (HSC) y profibrogénesis. El hígado de los animales obesos ob/ob mostró esteatosis, aumento de la expresión génica de la lipogénesis, inflamación, aumento de la expresión génica proinflamatoria, infiltrado inflamatorio y posible apoptosis ligada a una alta expresión de Caspasa 3. En ratones ob/ob, las sec- ciones de hígado se marcaron en las zonas fibróticas con anti-alfa- actina de músculo liso (alfa-SMA) y anti-Reelin, pero no en los ratones WT. Además, la expresión del gen alfa-SMA fue mayor en el hígado del grupo ob/ob que en el grupo WT. Las expresiones génicas profibrogénicas fueron paralelas a la inmunofluorescencia anti-alfa-SMA y anti-Reelin, lo que sugiere la activación de las HSC. En los animales ob/ob, hubo un aumento de las expresiones génicas involucradas con la lipogénesis (receptor activado por proliferador de peroxisoma gamma, efector c similar a DFFA inductor de muerte celular, proteína de unión al elemento regulador de esterol-1c y sintasa de ácidos grasos), pro-fibrogénesis (factor de crecimiento transformante beta 1, proteínas Smad-3, proteína-1 asociada a Yes, receptor beta del factor de crecimiento derivado de plaquetas de proteínas), proinflamación (factor de necrosis tumoral alfa e interleucina-6) y apoptosis (caspasa 3). ). En conclusión, los resultados en animales obesos ob/ob proporcionan una pista de los eventos en humanos. Desde un punto de vista traslacional, el control de estos objetivos puede ayudar a mitigar los efectos hepáticos de la obesidad humana y la progresión de HGNA a ENA.


Subject(s)
Animals , Mice , Leptin/deficiency , Fatty Liver/pathology , Photomicrography , Apoptosis , Microscopy, Confocal , Lipogenesis/genetics , Caspase 3/metabolism , Hepatic Stellate Cells/ultrastructure , Fatty Liver/genetics , Real-Time Polymerase Chain Reaction , Non-alcoholic Fatty Liver Disease/pathology , Inflammation/genetics , Liver/ultrastructure , Liver Cirrhosis/genetics , Liver Cirrhosis/pathology , Mice, Inbred C57BL , Obesity
4.
Electron. j. biotechnol ; 46: 30-37, jul. 2020. tab, graf
Article in English | LILACS | ID: biblio-1223233

ABSTRACT

BACKGROUND: The effects of dietary nutrition on tail fat deposition and the correlation between production performance and the Hh signaling pathway and OXCT1 were investigated in fat-tailed sheep. Tan sheep were fed different nutritional diets and the variances in tail length, width, thickness and tail weight as well as the mRNA expression of fat-related genes (C/EBPα, FAS, LPL, and HSL) were determined in the tail fat of sheep at three different growth stages based on their body weight. Furthermore, the correlations between tail phenotypes and the Hedgehog (Hh) signaling pathway components (IHH, PTCH1, SMO, and GLI1) and OXCT1 were investigated. RESULTS: C/EBPα, FAS, LPL, and HSL were expressed with differences in tail fat of sheep fed different nutritional diets at three different growth stages. The results of the two-way ANOVA showed the significant effect of nutrition, stage, and interaction on gene expression, except the between C/EBPα and growth stage. C/EBPα, FAS, and LPL were considerably correlated with the tail phenotypes. Furthermore, the results of the correlation analysis demonstrated a close relationship between the tail phenotypes and Hh signaling pathway and OXCT1. CONCLUSIONS: The present study demonstrated the gene-level role of dietary nutrition in promoting tail fat deposition and related tail fat-related genes. It provides a molecular basis by which nutritional balance and tail fat formation can be investigated and additional genes can be identified. The findings of the present study may help improve the production efficiency of fat-tailed sheep and identify crucial genes associated with tail fat deposition.


Subject(s)
Animals , Tail/metabolism , Sheep/genetics , Adipose Tissue , Diet , Phenotype , RNA, Messenger , Coenzyme A-Transferases , Gene Expression , Body Fat Distribution , Adipogenesis , Lipogenesis/genetics , Hedgehog Proteins/genetics , Real-Time Polymerase Chain Reaction
5.
Electron. j. biotechnol ; 44: 60-68, Mar. 2020. tab, graf, ilus
Article in English | LILACS | ID: biblio-1087705

ABSTRACT

Background: Oleaginous yeasts can be grown on different carbon sources, including lignocellulosic hydrolysate containing a mixture of glucose and xylose. However, not all yeast strains can utilize both the sugars for lipogenesis. Therefore, in this study, efforts were made to isolate dual sugar-utilizing oleaginous yeasts from different sources. Results: A total of eleven isolates were obtained, which were screened for their ability to utilize various carbohydrates for lipogenesis. One promising yeast isolate Trichosporon mycotoxinivorans S2 was selected based on its capability to use a mixture of glucose and xylose and produce 44.86 ± 4.03% lipids, as well as its tolerance to fermentation inhibitors. In order to identify an inexpensive source of sugars, nondetoxified paddy straw hydrolysate (saccharified with cellulase), supplemented with 0.05% yeast extract, 0.18% peptone, and 0.04% MgSO4 was used for growth of the yeast, resulting in a yield of 5.17 g L−1 lipids with conversion productivity of 0.06 g L−1 h−1 . Optimization of the levels of yeast extract, peptone, and MgSO4 for maximizing lipid production using Box­Behnken design led to an increase in lipid yield by 41.59%. FAME analysis of single cell oil revealed oleic acid (30.84%), palmitic acid (18.28%), and stearic acid (17.64%) as the major fatty acids. Conclusion: The fatty acid profile illustrates the potential of T. mycotoxinivorans S2 to produce single cell oil as a feedstock for biodiesel. Therefore, the present study also indicated the potential of selected yeast to develop a zero-waste process for the complete valorization of paddy straw hydrolysate without detoxification


Subject(s)
Trichosporon/metabolism , Oryza , Xylose/isolation & purification , Trichosporon/chemistry , Oils/chemistry , Lipogenesis , Biofuels , Fermentation , Glucose/isolation & purification , Hydrolysis , Lignin/metabolism , Lipids/biosynthesis
6.
Int. j. morphol ; 37(3): 1058-1066, Sept. 2019. graf
Article in Spanish | LILACS | ID: biblio-1012396

ABSTRACT

El consumo de fructosa ha aumentado en los últimos 50 años por la incorporación a la dieta de jarabe de maíz alto en fructosa (JMAF), presente en productos industrializados, como las bebidas azucaradas. Se puede asociar la ingesta de fructosa en altas concentraciones con el aumento de la obesidad y trastornos metabólicos. La fructosa, un azúcar natural que se encuentra en muchas frutas, se consume en cantidades significativas en las dietas occidentales. En cantidades iguales, es más dulce que la glucosa o la sacarosa y, por lo tanto, se usa comúnmente como edulcorante. Debido al incremento de obesidad entre la población joven y general y a los efectos negativos que puede tener a corto y largo plazo es importante considerar de donde provienen las calorías que se ingieren diariamente. Esta revisión describirá la relación entre el consumo de fructosa en altas concentraciones y el riesgo de desarrollar obesidad, resistencia a la insulina, lipogenesis de novo e inflamación.


The consumption of fructose has increased in the last 50 years due to the incorporation into the diet of high fructose corn syrup (HFCS), present in industrialized products, such as sugary drinks. The intake of fructose in high concentrations can be associated with the increase of obesity and metabolic disorders. Fructose, a natural sugar found in many fruits, is consumed in significant quantities in Western diets. In equal amounts, it is sweeter than glucose or sucrose and, therefore, is commonly used as a sweetener. Due to the increase of obesity among the young and general population and the negative effects that can have in the short and long term it is important to consider where the calories that are ingested daily come from. This review will describe the relationship between fructose consumption in high concentrations and the risk of developing obesity, insulin resistance, de novo lipogenesis, nonalcoholic fatty liver, inflammation and metabolic syndrome.


Subject(s)
Humans , Animals , Sweetening Agents/adverse effects , Insulin Resistance , Adipose Tissue/drug effects , Fructose/adverse effects , Obesity/chemically induced , Sweetening Agents/metabolism , Beverages , Body Weight/drug effects , Lipogenesis/drug effects , Fructose/metabolism , Glucose/adverse effects , Inflammation
7.
Journal of Nutrition and Health ; : 529-539, 2019.
Article in Korean | WPRIM | ID: wpr-786117

ABSTRACT

PURPOSE: Sprouts of evening primrose (Oenothera laciniata, OL) were reported to have high contents of flavonoids and potent antioxidant activity. This study examined the antioxidant and antiobesity activities of OL sprouts to determine if they could be a natural health-beneficial resource preventing obesity and oxidative stress.METHODS: OL sprouts were extracted with 50% ethanol, evaporated, and lyophilized (OLE). The in vitro antioxidant activity of OLE was examined using four different tests. The antiobesity activity and in vivo antioxidant activity from OLE consumption were examined using high fat diet-induced obese (DIO) C57BL/6 mice.RESULTS: The IC₅₀ for the 2,2-diphenyl-1-picryl-hydrazyl (DPPH) radical scavenging and superoxide dismutase (SOD)-like activities of OLE were 26.2 µg/mL and 327.6 µg/mL, respectively. OLE exhibited the ferric reducing antioxidant power (FRAP) activity of 56.7 µg ascorbic acid eq./mL at 100 µg/mL, and an increased glutathione level by 65.1% at 200 µg/mL compared to the control in the hUC-MSC stem cells. In an animal study, oral treatment with 50 mg or 100 mg of OLE/kg body weight for 14 weeks reduced the body weight gain, visceral fat content, fat cell size, blood leptin, and triglyceride levels, as well as the atherogenic index compared to the high fat diet control group (HFC) (p < 0.05). The blood malondialdehyde (MDA) level and the catalase and SOD-1 activities in adipose tissue were reduced significantly by the OLE treatment compared to HFC as well (p < 0.05). In epididymal adipose tissue, the OLE treatment reduced the mRNA expression of leptin, PPAR-γ and FAS significantly (p < 0.05) compared to HFC while it increased adiponectin expression (p < 0.05).CONCLUSION: OLE consumption has potent antioxidant and antiobesity activities via the suppression of oxidative stress and lipogenesis in DIO mice. Therefore, OLE could be a good candidate as a natural resource to develop functional food products that prevent obesity and oxidative stress.


Subject(s)
Animals , Mice , Adipocytes , Adipokines , Adiponectin , Adipose Tissue , Ascorbic Acid , Body Weight , Catalase , Diet, High-Fat , Ethanol , Flavonoids , Functional Food , Glutathione , In Vitro Techniques , Intra-Abdominal Fat , Leptin , Lipogenesis , Malondialdehyde , Mice, Obese , Natural Resources , Obesity , Oenothera biennis , Oxidative Stress , RNA, Messenger , Stem Cells , Superoxide Dismutase , Triglycerides
8.
Nutrition Research and Practice ; : 196-204, 2019.
Article in English | WPRIM | ID: wpr-760610

ABSTRACT

BACKGROUND/OBJECTIVES: Non-alcoholic fatty liver disease (NAFLD) is a common metabolic disease triggered by epigenetic alterations, including lysine acetylation at histone or non-histone proteins, affecting the stability or transcription of lipogenic genes. Although various natural dietary compounds have anti-lipogenic effects, their effects on the acetylation status and lipid metabolism in the liver have not been thoroughly investigated. MATERIALS/METHODS: Following oleic-palmitic acid (OPA)-induced lipid accumulation in HepG2 cells, the acetylation status of histone and non-histone proteins, HAT activity, and mRNA expression of representative lipogenic genes, including PPARγ, SREBP-1c, ACLY, and FASN, were evaluated. Furthermore, correlations between lipid accumulation and HAT activity for 22 representative natural food extracts (NExs) were evaluated. RESULTS: Non-histone protein acetylation increased following OPA treatment and the acetylation of histones H3K9, H4K8, and H4K16 was accelerated, accompanied by an increase in HAT activity. OPA-induced increases in the mRNA expression of lipogenic genes were down-regulated by C-646, a p300/CBP-specific inhibitor. Finally, we detected a positive correlation between HAT activity and lipid accumulation (Pearson's correlation coefficient = 0.604) using 22 NExs. CONCLUSIONS: Our results suggest that NExs have novel applications as nutraceutical agents with HAT inhibitor activity for the prevention and treatment of NAFLD.


Subject(s)
Acetylation , Dietary Supplements , Epigenomics , Hep G2 Cells , Histone Acetyltransferases , Histones , Lipid Metabolism , Lipogenesis , Liver , Lysine , Metabolic Diseases , Non-alcoholic Fatty Liver Disease , RNA, Messenger , Sterol Regulatory Element Binding Protein 1
10.
Rev. chil. endocrinol. diabetes ; 11(2): 47-53, abr. 2018. tab, graf
Article in Spanish | LILACS | ID: biblio-914719

ABSTRACT

Introduction: The Calcium Sensing Receptor (CaSR) is expressed in human fat cells, and its stimulation may be associated with adipose tissue dysfunction. The multisystemic character of obesity and the search of deepening the scope of the activation of CaSR in this disorder allows us to study the response of this protein in tissues that differ from adipose. Objective: To evaluate the effect of CaSR activation on the expression of lipogenic genes in a model of excess glucose and fatty acids in HepG2 human liver cells. Materials and methods: The effect of the calcimimetic cinacalcet (allosteric agonist of CaSR) on the content of triglycerides (fluorimetry) in a model of glucose supply and on the expression of lipogenic genes (qPCR) in hyperglycemia and hyperlipidemia conditions in the Liver cell line HepG2. Results: Cinacalcet, glucose (25 mM) and oleic acid (0.6 mM) did not affect cell viability. Activation of CaSR in the presence of glucose failed to increase the intracellular triglyceride content at 72 hours. Under these conditions, no response was observed for the factors coding for lipogenic genes (SREBP1c and FAS) at 24 hours of stimulation with cinacalcet in the liver cells. In the case of the over supply of fatty acids, the HepG2 cells did not show a variation in the gene expression of the DGAT enzymes after exposure to cinacalcet. Conclusion:Under conditions of glucose exposure, cinacalcet did not show a response in the triglyceride content, nor in the expression of genes related to hepatic lipogenesis. Therefore, stimulation of CaSR would not be associated with hepatic steatosis in HepG2 cells exposed to glucose.


Subject(s)
Humans , Receptors, Calcium-Sensing , Lipogenesis , Hep G2 Cells , Cell Survival , Real-Time Polymerase Chain Reaction
11.
Journal of Cancer Prevention ; : 99-106, 2018.
Article in English | WPRIM | ID: wpr-740097

ABSTRACT

Obesity is currently one of the most serious public health problems and it can lead to numerous metabolic diseases. Leucrose, d-glucopyranosyl-α-(1-5)-d-fructopyranose, is an isoform of sucrose and it is naturally found in pollen and honey. The aim of this study was to investigate the effect of leucrose on metabolic changes induced by a high-fat diet (HFD) that lead to obesity. C57BL/6 mice were fed a 60% HFD or a HFD with 25% (L25) or 50% (L50) of its total sucrose content replaced with leucrose for 12 weeks. Leucrose supplementation improved fasting blood glucose levels and hepatic triglyceride content. In addition, leucrose supplementation reduced mRNA levels of lipogenesis-related genes, including peroxisome proliferator-activated receptor γ, sterol regulatory element binding protein 1C, and fatty acid synthase in HFD mice. Conversely, mRNA levels of β oxidation-related genes, such as carnitine palmitoyltransferase 1A and acyl CoA oxidase, returned to control levels with leucrose supplementation. Taken together, these results demonstrated the therapeutic potential of leucrose to prevent metabolic abnormalities by mediating regulation of plasma glucose level and hepatic triglyceride accumulation.


Subject(s)
Animals , Mice , Acyl-CoA Oxidase , Blood Glucose , Carnitine O-Palmitoyltransferase , Diet, High-Fat , Fasting , Honey , Lipogenesis , Liver , Metabolic Diseases , Mice, Obese , Negotiating , Obesity , Peroxisomes , Pollen , Public Health , RNA, Messenger , Sterol Regulatory Element Binding Protein 1 , Sucrose , Triglycerides
12.
Annals of Dermatology ; : 581-587, 2018.
Article in English | WPRIM | ID: wpr-717764

ABSTRACT

BACKGROUND: Although many therapeutic agents have been developed, only a few drugs are known to target multiple pathogenic factors in the treatment of acne. OBJECTIVE: The purpose of this study was to identify a new drug candidate, platycodin D, which is a substance extracted from the root of Platycodon grandiflorum. METHODS: Using western blotting and Cell Counting Kit-8 assay, we studied the effects of platycodin D on SEB-1 sebocytes, fibroblasts, and keratinocytes. We investigated its effects in view of lipogenesis, collagen production, anti-inflammatory activity, and dyskeratinization. RESULTS: In SEB-1 sebocytes, platycodin D showed a sebosuppressive effect by downregulating ERK and insulin- like growth factor-1R/PI3K/Akt/sterol-regulatory element binding protein-1 signaling pathways. In addition, adiponectin, one of the adipokines responsible for sebum production, was decreased in platycodin D-treated SEB-1 sebocytes. In fibroblasts, platycodin D increased collagen production and reduced inflammation by inhibiting nuclear factor kappa B and matrix metalloproteinases. Platycodin D also showed anti-inflammatory effects on keratinocytes. It also suppressed keratin 16 expression induced by lipopolysaccharide. Furthermore, platycodin D showed no cytotoxicity on both SEB-1 sebocytes and fibroblasts. CONCLUSION: Our data demonstrate the clinical feasibility of platycodin D for acne treatment and the prevention of acne scarring by sebosuppressive and anti-inflammatory effects, as well as through an increase in collagen levels.


Subject(s)
Acne Vulgaris , Adipokines , Adiponectin , Blotting, Western , Cell Count , Cicatrix , Collagen , Fibroblasts , Inflammation , Keratin-16 , Keratinocytes , Lipogenesis , Matrix Metalloproteinases , NF-kappa B , Platycodon , Sebum
13.
Chinese Medical Journal ; (24): 2310-2319, 2018.
Article in English | WPRIM | ID: wpr-690220

ABSTRACT

<p><b>Background</b>A high consumption of fructose leads to hepatic steatosis. About 20-30% of triglycerides are synthesized via de novo lipogenesis. Some studies showed that endoplasmic reticulum stress (ERS) is involved in this process, while others showed that a lipotoxic environment directly influences ER homeostasis. Here, our aim was to investigate the causal relationship between ERS and fatty acid synthesis and the effect of X-box binding protein-1 (XBP-1), one marker of ERS, on hepatic lipid accumulation stimulated by high fructose.</p><p><b>Methods</b>HepG2 cells were incubated with different concentrations of fructose. Upstream regulators of de novo lipogenesis (i.e., carbohydrate response element-binding protein [ChREBP] and sterol regulatory element-binding protein 1c [SREBP-1c]) were measured by polymerase chain reaction and key lipogenic enzymes (acetyl-CoA carboxylase [ACC], fatty acid synthase [FAS], and stearoyl-CoA desaturase-1 [SCD-1]) by Western blotting. The same lipogenesis-associated factors were then evaluated after exposure of HepG2 cells to high fructose followed by the ERS inhibitor tauroursodeoxycholic acid (TUDCA) or the ERS inducer thapsigargin. Finally, the same lipogenesis-associated factors were evaluated in HepG2 cells after XBP-1 upregulation or downregulation through cell transfection.</p><p><b>Results</b>Exposure to high fructose increased triglyceride levels in a dose- and time-dependent manner and significantly increased mRNA levels of SREBP-1c and ChREBP and protein levels of FAS, ACC, and SCD-1, concomitant with XBP-1 conversion to an active spliced form. Lipogenesis-associated factors induced by high fructose were inhibited by TUDCA and induced by thapsigargin. Triglyceride level in XBP-1-deficient group decreased significantly compared with high-fructose group (4.41 ± 0.54 μmol/g vs. 6.52 ± 0.38 μmol/g, P < 0.001), as mRNA expressions of SREBP-1c (2.92 ± 0.46 vs. 5.08 ± 0.41, P < 0.01) and protein levels of FAS (0.53 ± 0.06 vs. 0.85 ± 0.05, P = 0.01), SCD-1 (0.65 ± 0.06 vs. 0.90 ± 0.04, P = 0.04), and ACC (0.38 ± 0.03 vs. 0.95 ± 0.06, P < 0.01) decreased. Conversely, levels of triglyceride (4.22 ± 0.54 μmol/g vs. 2.41 ± 0.35 μmol/g, P < 0.001), mRNA expression of SREBP-1c (2.70 ± 0.33 vs. 1.00 ± 0.00, P < 0.01), and protein expression of SCD-1 (0.93 ± 0.06 vs. 0.26 ± 0.05, P < 0.01), ACC (0.98 ± 0.09 vs. 0.43 ± 0.03, P < 0.01), and FAS (0.90 ± 0.33 vs. 0.71 ± 0.02, P = 0.04) in XBP-1s-upregulated group increased compared with the untransfected group.</p><p><b>Conclusions</b>ERS is associated with de novo lipogenesis, and XBP-1 partially mediates high-fructose-induced lipid accumulation in HepG2 cells through augmentation of de novo lipogenesis.</p>


Subject(s)
Humans , Endoplasmic Reticulum Stress , Physiology , Fatty Liver , Fructose , Metabolism , Hep G2 Cells , Lipogenesis , Physiology , Liver , Sterol Regulatory Element Binding Protein 1 , X-Box Binding Protein 1 , Physiology
14.
Diabetes & Metabolism Journal ; : 233-243, 2018.
Article in English | WPRIM | ID: wpr-714842

ABSTRACT

BACKGROUND: Hepatic steatosis is caused by metabolic stress associated with a positive lipid balance, such as insulin resistance and obesity. Previously we have shown the anti-obesity effects of inhibiting serotonin synthesis, which eventually improved insulin sensitivity and hepatic steatosis. However, it is not clear whether serotonin has direct effect on hepatic lipid accumulation. Here, we showed the possibility of direct action of serotonin on hepatic steatosis. METHODS: Mice were treated with para-chlorophenylalanine (PCPA) or LP-533401 to inhibit serotonin synthesis and fed with high fat diet (HFD) or high carbohydrate diet (HCD) to induce hepatic steatosis. Hepatic triglyceride content and gene expression profiles were analyzed. RESULTS: Pharmacological and genetic inhibition of serotonin synthesis reduced HFD-induced hepatic lipid accumulation. Furthermore, short-term PCPA treatment prevented HCD-induced hepatic steatosis without affecting glucose tolerance and browning of subcutaneous adipose tissue. Gene expression analysis revealed that the expressions of genes involved in de novo lipogenesis and triacylglycerol synthesis were downregulated by short-term PCPA treatment as well as long-term PCPA treatment. CONCLUSION: Short-term inhibition of serotonin synthesis prevented hepatic lipid accumulation without affecting systemic insulin sensitivity and energy expenditure, suggesting the direct steatogenic effect of serotonin in liver.


Subject(s)
Animals , Mice , Diabetes Mellitus , Diet , Diet, High-Fat , Energy Metabolism , Fatty Liver , Fenclonine , Gene Expression , Glucose , Insulin Resistance , Lipogenesis , Liver , Obesity , Serotonin , Stress, Physiological , Subcutaneous Fat , Transcriptome , Triglycerides
15.
Nutrition Research and Practice ; : 110-117, 2018.
Article in English | WPRIM | ID: wpr-713830

ABSTRACT

BACKGROUND/OBJECTIVES: Non-alcoholic fatty liver disease (NAFLD) is a leading cause of chronic liver disease and is closely associated with metabolic syndrome. In the present study, we observed the effect of ethanol extract of Allium fistulosum (EAF) on NAFLD and have suggested the possibility of using EAF as a natural product for application in the development of a treatment for NAFLD. MATERIALS/METHODS: The preventive effect on hepatic lipid accumulation was estimated by using an oleic acid (OA)-induced NAFLD model in vitro and a Western diet (high-fat high-sucrose; WD)-induced obese mouse model. Animals were divided into three groups (n = 7): normal diet group (ND), WD group, and WD plus 1% EAF group. RESULTS: EAF reduced OA-stimulated lipid accumulation in HepG2 cells in the absence of cellular cytotoxicity and significantly blocked transcriptional activation of sterol regulatory element-binding protein 1 and fatty acid synthase genes. Subsequently, we investigated these effects in vivo in mice fed either ND or WD in the presence or absence of EAF supplementation. In comparison to the ND controls, the WD-fed mice exhibited increases in body weight, liver weight, epididymal fat weight, and accumulation of fat in hepatocytes, and these effects were significantly attenuated by EAF supplementation. CONCLUSIONS: Allium fistulosum attenuates the development of NAFLD, and EAF elicits anti-lipogenic activity in liver. Therefore, EAF represents a promising candidate for use in the development of novel therapeutic drugs or drug combinations for the prevention and treatment of NAFLD.


Subject(s)
Animals , Mice , Allium , Body Weight , Diet , Diet, Western , Drug Combinations , Ethanol , Hep G2 Cells , Hepatocytes , In Vitro Techniques , Lipogenesis , Liver , Liver Diseases , Mice, Obese , Non-alcoholic Fatty Liver Disease , Oleic Acid , Sterol Regulatory Element Binding Protein 1 , Transcriptional Activation
16.
Clinical and Molecular Hepatology ; : 77-87, 2018.
Article in English | WPRIM | ID: wpr-713309

ABSTRACT

BACKGROUND/AIMS: Hepatic steatosis is caused by an imbalance between free fatty acids (FFAs) uptake, utilization, storage, and disposal. Understanding the molecular mechanisms involved in FFAs accumulation and its modulation could drive the development of potential therapies for Nonalcoholic fatty liver disease. The aim of the current study was to explore the effects of picroside II, a phytoactive found in Picrorhiza kurroa, on fatty acid accumulation vis-à-vis silibinin, a known hepatoprotective phytoactive from Silybum marianum. METHODS: HepG2 cells were loaded with FFAs (oleic acid:palmitic acid/2:1) for 20 hours to mimic hepatic steatosis. The FFAs concentration achieving maximum fat accumulation and minimal cytotoxicity (500 μM) was standardized. HepG2 cells were exposed to the standardized FFAs concentration with and without picroside II pretreatment. RESULTS: Picroside II pretreatment inhibited FFAs-induced lipid accumulation by attenuating the expression of fatty acid transport protein 5, sterol regulatory element binding protein 1 and stearoyl CoA desaturase. Preatreatment with picroside II was also found to decrease the expression of forkhead box protein O1 and phosphoenolpyruvate carboxykinase. CONCLUSIONS: These findings suggest that picroside II effectively attenuated fatty acid accumulation by decreasing FFAs uptake and lipogenesis. Picroside II also decreased the expression of gluconeogenic genes.


Subject(s)
Fatty Acid Transport Proteins , Fatty Acids, Nonesterified , Hep G2 Cells , Lipogenesis , Milk Thistle , Non-alcoholic Fatty Liver Disease , Phosphoenolpyruvate , Picrorhiza , Stearoyl-CoA Desaturase , Sterol Regulatory Element Binding Protein 1
17.
Protein & Cell ; (12): 145-151, 2018.
Article in English | WPRIM | ID: wpr-756988

ABSTRACT

The mechanistic target of rapamycin (mTOR) signaling pathway regulates many metabolic and physiological processes in different organs or tissues. Dysregulation of mTOR signaling has been implicated in many human diseases including obesity, diabetes, cancer, fatty liver diseases, and neuronal disorders. Here we review recent progress in understanding how mTORC1 (mTOR complex 1) signaling regulates lipid metabolism in the liver.


Subject(s)
Animals , Humans , Lipid Metabolism , Lipogenesis , Liver , Cell Biology , Metabolism , Pathology , Mechanistic Target of Rapamycin Complex 1 , Metabolism , Signal Transduction
18.
The Korean Journal of Physiology and Pharmacology ; : 23-33, 2018.
Article in English | WPRIM | ID: wpr-727941

ABSTRACT

Cushing's syndrome (CS) is a collection of symptoms caused by prolonged exposure to excess cortisol. Chronically elevated glucocorticoid (GC) levels contribute to hepatic steatosis. We hypothesized that histone deacetylase inhibitors (HDACi) could attenuate hepatic steatosis through glucocorticoid receptor (GR) acetylation in experimental CS. To induce CS, we administered adrenocorticotropic hormone (ACTH; 40 ng/kg/day) to Sprague-Dawley rats by subcutaneous infusion with osmotic mini-pumps. We administered the HDACi, sodium valproate (VPA; 0.71% w/v), in the drinking water. Treatment with the HDACi decreased steatosis and the expression of lipogenic genes in the livers of CS rats. The enrichment of GR at the promoters of the lipogenic genes, such as acetyl-CoA carboxylase (Acc), fatty acid synthase (Fasn), and sterol regulatory element binding protein 1c (Srebp1c), was markedly decreased by VPA. Pan-HDACi and an HDAC class I-specific inhibitor, but not an HDAC class II a-specific inhibitor, attenuated dexamethasone (DEX)-induced lipogenesis in HepG2 cells. The transcriptional activity of Fasn was decreased by pretreatment with VPA. In addition, pretreatment with VPA decreased DEX-induced binding of GR to the glucocorticoid response element (GRE). Treatment with VPA increased the acetylation of GR in ACTH-infused rats and DEX-induced HepG2 cells. Taken together, these results indicate that HDAC inhibition attenuates hepatic steatosis hrough GR acetylation in experimental CS.


Subject(s)
Animals , Rats , Acetyl-CoA Carboxylase , Acetylation , Adrenocorticotropic Hormone , Cushing Syndrome , Dexamethasone , Drinking Water , Hep G2 Cells , Histone Deacetylase Inhibitors , Histone Deacetylases , Histones , Hydrocortisone , Infusions, Subcutaneous , Lipogenesis , Liver , Rats, Sprague-Dawley , Receptors, Glucocorticoid , Response Elements , Sterol Regulatory Element Binding Protein 1 , Valproic Acid
19.
Nutrition Research and Practice ; : 503-511, 2018.
Article in English | WPRIM | ID: wpr-718586

ABSTRACT

BACKGROUND/OBJECTIVES: Ginger, a root vegetable, is known to have antioxidant and antiobesity effects. Preparation, such as by steaming, can affect the chemical composition of prepared root vegetables or herbs and can change their functional activities. In the present study, we investigated the protective effects of steamed ginger against oxidative stress and steatosis in C57BL/6J mice fed a high-fat diet. MATERIALS/METHODS: The levels of polyphenols and flavonoids in two different extracts of steamed ginger, i.e., water extract (SGW) and ethanolic extract (SGE); as well, their antioxidant activities were examined. Forty male C57BL/6J mice were fed a normal diet (ND, n = 10), high-fat diet (HFD, 60% fat, w/w, n = 10), HFD supplemented with 200 mg/kg of SGE or garcinia (GAR) by weight (SGED or GARD, respectively, n = 10) for 12 weeks. Serum chemistry was examined, and the expressions of genes involved in lipid metabolism were determined in the liver. Histological analysis was performed to identify lipid accumulations in epididymal fat pads and liver. RESULTS: The SGE had higher contents of polyphenols and flavonoids and higher DPPH and ABTS⁺ free radical scavenging activities compared to those of SGW. Treatment with SGE or GAR significantly decreased the HFD-induced weight gain. Both SGE and GAR significantly reduced the high serum total cholesterol (TC), triglyceride (TG) and low-density lipoprotein levels induced by HFD. Compared to ND, HFD significantly increased hepatic TC and TG levels. SGE or GAR supplementation significantly decreased the increase of hepatic lipids by HFD. Interestingly, SGE had a more significant effect in reducing hepatic TC and TG levels than GAR. Furthermore, hepatic genes involved in lipogenesis and lipolysis were altered in both the SGED and GARD groups. CONCLUSIONS: The present study indicates that steamed ginger supplementation can decrease plasma TC and TG and can inhibit liver steatosis by regulating the expressions of hepatic genes.


Subject(s)
Animals , Humans , Male , Mice , Adipose Tissue , Chemistry , Cholesterol , Diet , Diet, High-Fat , Ethanol , Fatty Liver , Flavonoids , Garcinia , Ginger , Lipid Metabolism , Lipogenesis , Lipolysis , Lipoproteins , Liver , Obesity , Oxidative Stress , Plasma , Polyphenols , Steam , Triglycerides , Vegetables , Water , Weight Gain
20.
Braz. j. med. biol. res ; 50(5): e5858, 2017. tab, graf
Article in English | LILACS | ID: biblio-839295

ABSTRACT

Modifications in life-style and/or pharmacotherapies contribute to weight loss and ameliorate the metabolic profile of diet-induced obese humans and rodents. Since these strategies fail to treat hypothalamic obesity, we have assessed the possible mechanisms by which duodenal-jejunal bypass (DJB) surgery regulates hepatic lipid metabolism and the morphophysiology of pancreatic islets, in hypothalamic obese (HyO) rats. During the first 5 days of life, male Wistar rats received subcutaneous injections of monosodium glutamate (4 g/kg body weight, HyO group), or saline (CTL). At 90 days of age, HyO rats were randomly subjected to DJB (HyO DJB group) or sham surgery (HyO Sham group). HyO Sham rats were morbidly obese, insulin resistant, hypertriglyceridemic and displayed higher serum concentrations of non-esterified fatty acids (NEFA) and hepatic triglyceride (TG). These effects were associated with higher expressions of the lipogenic genes and fatty acid synthase (FASN) protein content in the liver. Furthermore, hepatic genes involved in β-oxidation and TG export were down-regulated in HyO rats. In addition, these rats exhibited hyperinsulinemia, β-cell hypersecretion, a higher percentage of islets and β-cell area/pancreas section, and enhanced nuclear content of Ki67 protein in islet-cells. At 2 months after DJB surgery, serum concentrations of TG and NEFA, but not hepatic TG accumulation and gene and protein expressions, were normalized in HyO rats. Insulin release and Ki67 positive cells were also normalized in HyO DJB islets. In conclusion, DJB decreased islet-cell proliferation, normalized insulinemia, and ameliorated insulin sensitivity and plasma lipid profile, independently of changes in hepatic metabolism.


Subject(s)
Animals , Male , Duodenum/surgery , Fatty Liver/metabolism , Gastric Bypass/methods , Hypothalamic Diseases/metabolism , Islets of Langerhans/cytology , Islets of Langerhans/metabolism , Jejunum/surgery , Obesity/metabolism , Animals, Newborn , Blood Glucose/metabolism , Cell Proliferation , Cholesterol/blood , Fatty Acid Synthase, Type I/metabolism , Fatty Acids/blood , Fatty Liver/physiopathology , Hypothalamic Diseases/physiopathology , Hypothalamic Diseases/surgery , Insulin Resistance , Insulin/metabolism , Islets of Langerhans/physiopathology , Lipogenesis/genetics , Liver/metabolism , Liver/pathology , Obesity/physiopathology , Obesity/surgery , Pancreas/metabolism , Pancreas/pathology , Random Allocation , Rats, Wistar , Reproducibility of Results , Time Factors , Triglycerides/blood
SELECTION OF CITATIONS
SEARCH DETAIL